Abstract

To understand the effect of torrefaction severity on structure changes of hemicellulose, cellulose, lignin and their subsequent catalytic fast pyrolysis (CFP) behavior, torrefaction of lignin, hemicellulose, and cellulose was performed in a tubular reactor with different reaction temperatures (210–300 °C) and residence times (20–60 min). The experimental results show that the rank order of thermal stability during torrefaction was cellulose > lignin > hemicellulose. The torrefied hemicelulose, cellulose, and lignin were subsequently catalytic-fast-pyrolyzed over HZSM-5 in a semi-batch pyroprobe reactor. The effects of the torrefaction temperature and residence time on aromatic yields and selectivity from CFP of torrefied hemicellulose, cellulose, and lignin were investigated. The experimental results showed that torrefaction can cause the reduction in the aromatic yield and increase in benzene, toluene, and xylenes (BTX) selectivity from CFP of torrefied hemicellulose and lignin. It has little impact on C...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.