Abstract

AbstractImproving electrode performance is crucial for increasing energy efficiency and power density in redox flow batteries. Here, we study the effects of thermal activation of carbon paper electrodes on the performance of bismuth as an electrocatalyst in high‐voltage KCrPDTA/K4Fe(CN)6 flow batteries. While thermal activation improves wettability and surface area, it also leads to the formation of large, agglomerated bismuth deposits that reduce Coulombic efficiency. Although bismuth lowers cell resistance and enhances voltage efficiency, it promotes parasitic hydrogen evolution depending on its morphology, underscoring the need for optimized catalyst deposition techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.