Abstract

We study the impact of thermal boundary conductance (TBC) at carbon nanotube (CNT)-substrate interfaces and CNT junctions on power dissipation and breakdown in CNT network based thin film transistors (CN-TFTs). Comparison of our results from an electro-thermal transport model of CN-TFTs to experimental measurements of power dissipation and temperature profiles allows us to estimate the average CNT-SiO2 TBC as g ∼ 0.16 Wm−1 K−1 and the TBC at CNT junctions as GC ∼ 2.4 pWK−1. We find the peak power dissipation in CN-TFTs is more strongly correlated to the TBC of the CNT-substrate interface than to the TBC at CNT junctions. Molecular dynamics simulations of crossed CNT junctions also reveal that the top CNT is buckled over ∼30 nm lengths, losing direct contact with the substrate and creating highly localized hot-spots. Our results provide new insights into CNT network properties which can be engineered to enhance performance of CN-TFTs for macro and flexible electronics applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call