Abstract
The present article attempts to describe the behavior of wastegated turbines under various steady and pulsating flow conditions. For this, meanline and one-dimensional numerical codes including appropriate modeling approaches for wastegated turbines have been developed with the FORTRAN language. These codes were validated against experiments with an established test rig at the National School of Engineers of Sfax. The discharge coefficient map of the wastegate was determined with a developed correlation built from experiments, and it was served as an input to the developed codes for interpolations during computation. This correlation is based on a two-dimensional non-linear dose-response fitting relationship instead of classical polynomial function which is one novelty of the article in addition to the one-dimensional modeling methodology. The normalized root mean square error (NRMSE) of both cycle-averaged efficiency and mass flow parameter (MFP) remains below 2% which confirms the validity of the proposed calculation approach. The results indicated a large deviation in the turbine performance under pulsating flow conditions compared to the steady state ones. The shape of the hysteresis loop of the turbine efficiency remains unchanged toward the variation of the wastegate valve angle at the same pulse frequency. The mass flow hystereses loop area is decreased by around 50% as the pulse frequency increases from 33 up to 133.33 Hz. An increase of less than 1% of the cycle-averaged efficiency has been reported when the bypass flow through the wastegate increases. The fluctuation of the efficiency is decreased by 1.5% when the wastegate valve becomes fully opened under the whole range of the pulse frequency.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have