Abstract

AbstractThis paper deals with the large-scale inertio-gravity (IG) wave energy in the operational ECMWF analyses in July 2007. Energy percentages of the IG waves obtained from the standard-pressure-level data are compared to those derived from various discretizations of the model-level data. The results show a small albeit systematic increase of the IG energy percentage as the vertical level density increases from the standard-pressure levels toward the model-level density; the small relative change is explained by the sufficient vertical resolution to resolve the large-scale IG waves in the tropics that make the majority of the global IG energy on large scales. A relatively larger increase of the IG energy is obtained when the mesospheric model levels are included; however, the analyses at these levels in July 2007 are less reliable. Furthermore, two numerical methods for the normal-mode function (NMF) decomposition are shown to provide similar results. The decomposition of atmospheric analyses into the NMF series is proposed as a tool to analyze the spatial and temporal variations of the large-scale equatorial waves and their role in global energetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.