Abstract

When machining metastable austenitic stainless steel with cryogenic cooling, a deformation-induced phase transformation from γ-austenite to α′-martensite can be realized in the workpiece subsurface. This leads to a higher microhardness and thus improved fatigue and wear resistance. A parametric and a non-parametric model were developed in order to investigate the correlation between the thermomechanical load in the workpiece subsurface and the resulting α′-martensite content. It was demonstrated that increasing passive forces and cutting forces promoted the deformation-induced phase transformation, while increasing temperatures had an inhibiting effect. The feed force had no significant influence on the α′-martensite content. With the proposed models it is now possible to estimate the α′-martensite content during cryogenic turning by means of in-situ measurement of process forces and temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.