Abstract
The efficient materials for Li-ion battery electrodes require suitable composition, high-crystallinity and appropriate structuration. The last one is important to assure an efficient exchange of Li ions between the anode and electrolyte, thus enhancing the kinetics of electrochemical reactions. Therefore, the synthesis of well-crystallized nano-sized electrode materials exhibiting high surface area is of great interest. Herein, we explore the influence of the glycothermal synthesis variations on the structure and porosity of Li4Ti5O12. The utilized precursors and their concentration have a minor influence on crystallites size, but they could be used to control the porosity of assembled particles. The prepared Li-ion battery anode could be charged at low and high rate reaching the theoretical capacity of Li4Ti5O12. The material retains its peculiar porous structuration even after 1000 cycles at charging/discharging rate of 50C which contributes to the lack of capacity fading. Additionally, 7Li NMR is performed on one of synthesized nano-structured Li4Ti5O12 and compared with commercially available nanosized Li4Ti5O12 to understand the excellent electrochemical performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have