Abstract

Abstract After the onset of the Southeast Asian summer monsoon in mid-May, the South China Sea (SCS) trough is deepened by the intensified monsoon westerlies to facilitate the development of a synoptic cyclonic shear flow. This shear flow forms an environment favorable for the SCS tropical storm (TS)/typhoon (TY) genesis triggered by the surge of this monsoon circulation. This genesis mechanism has not been well documented. Seventeen named SCS TS/TY geneses in May over 1979–2016 occurred under the following environmental conditions/processes: 1) with its maximum located south of 15°N, the intensified monsoon westerlies are extended eastward beyond 120°E, 2) the synoptic SCS cyclonic shear flow is developed by the tropical easterlies fed by a northeast Asian cold surge (or a North Pacific cold-air outbreak) and the intensified monsoon westerlies, and 3) SCS TS/TY genesis is triggered by the surge of monsoon flow. The accuracy of the monthly mean forecasts is limited. However, it is found that SCS TS/TY genesis only occurs after the existence of persistent, strong, monsoon westerlies lasting for at least 5 days. Forecasts from the National Centers for Environmental Prediction Global Forecast System (2004–16) and the Global Ensemble Forecast System (1985–2003) cover these 15 SCS TS/TY geneses. The requirements for SCS TS/TY genesis in May described above are met by the 5-day-mean Southeast Asian summer monsoon circulation. Based on a statistical analysis of 5-day forecasts for these TS/TY geneses, a four-step forecast advisory is introduced. The forecasts for SCS TS/TY genesis can be made 3 days prior to occurrence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call