Abstract
To improve metal purity by reducing solid and liquid inclusions, intelligent filters with a functionalized surface are studied for an application in metal melt filtration. Besides special coatings that increase the attraction of inclusions at the filter surface or react with gases inside the melt, also the filter roughness might increase the filtration efficiency. In this study, we investigate the influence of roughness on adhesion forces for hydrophilic and hydrophobic filter surfaces in a water‐based model system with an atomic force microscope. In the case of hydrophilic filter substrates, adhesion forces decrease with an increase of roughness whereas on hydrophobic filter surfaces an inverse effect is observed. The primary cause for this is the formation of small cap‐shaped bubbles due to poor wetting. To investigate the stability of these bubbles on smooth as well as rough samples of filter material, imaging in contact mode with increasing applied force is performed. On rough surfaces, the bubbles remain stable even at 30–50 nN because of pinning effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.