Abstract

The atmospheric response to Arctic sea ice loss remains a subject of much debate. Most studies have focused on the sea ice retreat in the Barents-Kara Seas and its troposphere-stratosphere influence. Here, we investigate the impact of large sea ice loss over the Chukchi-Bering Seas on the sudden stratospheric warming (SSW) phenomenon during the easterly phase of the Quasi-Biennial Oscillation through idealized large-ensemble experiments based on a global atmospheric model with a well-resolved stratosphere. Although culminating in autumn, the prescribed sea ice loss induces near-surface warming that persists into winter and deepens as the SSW develops. The resulting temperature contrasts foster a deep cyclonic circulation over the North Pacific, which elicits a strong upward wavenumber-2 activity into the stratosphere, reinforcing the climatological planetary wave pattern. While not affecting the SSW occurrence frequency, the amplified wave forcing in the stratosphere significantly increases the SSW duration and intensity, enhancing cold air outbreaks over the continents afterward.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.