Abstract

The nocturnal low-level jet (LLJ) and orographic (gravity) waves play an important role in the generation of turbulence and pollutant dispersion and can affect the energy production by wind turbines. Additionally, gravity waves have an influence on the local mixing and turbulence within the surface layer and the vertical flux of mass into the lower atmosphere. On 25 September 2017, during a field campaign, a persistent easterly LLJ and gravity waves were observed simultaneously in a coastal area in the north of France. We explore the variability of the wind speed, turbulent eddies, and turbulence kinetic energy in the time–frequency and space domain using an ultrasonic anemometer and a scanning wind lidar. The results reveal a significant enhancement of the turbulence-kinetic-energy dissipation (by 50%) due to gravity waves in the LLJ shear layer (below the jet core) during the period of wave propagation. Large magnitudes of zonal and vertical components of the shear stress (approximately 0.4 and 1.5 m2 s−2, respectively) are found during that period. Large eddies (scales of 110 to 280 m) matching the high-wind-speed regime are found to propagate the momentum downwards, which enhances the mass transport from the LLJ shear layer to the roughness layer. Furthermore, these large-scale eddies are associated with the crests while comparatively small-scale eddies are associated with the troughs of the gravity wave.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call