Abstract

The effect of the phosphine (PH3) flow rate on the doping profile, in particular the peak doping concentration of the n+ emitter layer, of solid phase crystallised polycrystalline silicon thin-film solar cells on glass is investigated by electrochemical capacitance-voltage profiling. The peak n+ layer doping is found to increase with increasing PH3 gas flow, resulting in a shift of the p-n junction location towards the centre of the diode. The impact of the PH3 flow rate on the crystal quality of the poly-Si films is analysed using ultraviolet (UV) reflectance and UV/visible Raman spectroscopy. The impact of the PH3 flow rate on the efficiency of poly-Si thin-film solar cells is investigated using electrical measurements. An improvement in the efficiency by 46% and a pseudo energy conversion efficiency of 5% was obtained through precise control of the flow rate at an intermediate n+ emitter layer doping concentration of 1.0 × 1019 cm−3. The best fabricated poly-Si thin-film solar cell is also found to have the highest crystal quality factor, based on both Raman and UV reflectance measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.