Abstract
In this paper we present a theoretical study of light trapping in polycrystalline silicon (poly-Si) thin-film solar cells with scattering surfaces, using the commercial software Advanced Semiconductor Analysis (ASA). Light scattering in ASA is modelled by haze parameters and angular distribution functions. The effects of these functions on the calculated absorption in poly-Si thin-film solar cells are investigated. An expected result of this investigation is that the optical absorption increases with an increasing fraction of light being scattered. This increased absorption results in a higher photocurrent generation and, thus, in an improved solar cell efficiency. For poor material quality, however, a higher haze value can also result in a decrease in the short-circuit current due to increased recombination losses. Additionally, our results show that, for poor material quality, a front surface texture is to be preferred over a rear surface texture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.