Abstract

We studied the effect of gas flow ratio of the H 2 carrier gas to the NH 3 precursor on the physical and crystal properties of GaN. GaN was grown by vertical reactor metalorganic chemical vapour deposition (MOCVD) on a low-temperature-deposited GaN buffer layer. A (0 0 0 1) sapphire substrate was used. The impact of the gas flow ratio as it was varied from 0.25 to 1 was investigated and discussed. With increase in flow ratio, the concentrations of magnesium and carbon impurities in GaN increased. The flow ratio of 0.5 is the optimum value to minimise the background electron concentration and to maintain crystal quality. The decrease in the background electron concentration is due to the compensation mechanism of acceptor-like magnesium and carbon impurities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.