Abstract

In this article, we investigate the impact of heat transfer between the flame and the flame-holder on the dynamic stability characteristics of a 50-kW backward-facing step combustor. We conducted a series of tests where two backward step blocks were used, made of ceramic and stainless steel, whose thermal conductivities are 1.06 and 12 W/m/K, respectively. Stability characteristics of the two flame-holder materials were examined using measurements of the dynamic pressure and flame chemiluminescence over a range of operating conditions. Results show that with the ceramic flameholder, the onset of instability is significantly delayed in time and, for certain operating conditions, disappears altogether, whereas with the higher conductivity material, the combustor becomes increasingly unstable over a range of operating conditions. We explain these trends using the heat flux through the flame-holder and the change in the burning velocity near the step wall. Results suggest a potential approach using low-thermal-conductivity material near the flame-holder as passive dynamics suppression methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call