Abstract

This paper presents result of a detailed simulation study aimed at optimizing the different diaphragm structures of silicon micro machined MEMS pressure sensor for operation and measurement of the low-pressure ranges(600mbar). We first show that the conventional arrangement of the Wheatstone bridge resistors realized using the “Flat diaphragms” give rise to large temperature dependence of the offset voltage which affects the sensitivity and linearity of the pressure sensors during operation in the temperatures ranging from-40°Cto+80°C, thus making the temperature compensation of the sensor output voltage rather tedious and impossible in certain instances. We further demonstrate that, this issue can be circumvented and excellent linearity with minimum dependence of the offset-voltage, sensitivity and linearity can be achieved by using “sculptured diaphragms” with optimized diaphragm dimensions. Towards this goal, in this paper, we present a set of simulation studies involving optimization of the pressure sensor diaphragm dimensions and structures with single and multiple boss structures to achieve better sensitivity, linearity, and at the same time minimize temperature drift, and to achieve better repeatability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call