Abstract

The influence of the subphase temperature on the stripe pattern formation during Langmuir-Blodgett transfer (LB patterning) is investigated in a combined experimental and theoretical study. According to our experiments on the LB transfer of dipalmitoylphosphatidylcholine (DPPC) on planar mica substrates, even small temperature changes between 21.5 and 24.5 °C lead to significant changes in the monolayer patterns. For a constant surface pressure and dipper speed, the width of the stripes and the overall spatial period of the patterns increase with increasing subphase temperature. Because the stripe patterns are ascribed to alternating monolayer domains in the liquid-expanded and the liquid-condensed phases, the working regime for the formation of stripes is found to depend strongly on the respective surface pressure-area isotherm. These experimental findings are in accordance with the results of a theoretical investigation based on a model that takes hydrodynamics and the monolayer thermodynamics into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.