Abstract

The membrane potential (Vmem), defined as the electric potential difference across a membrane flanked by two different salt solutions, is central to electrochemical energy harvesting and conversion. Also, Vmem and the ionic concentrations that establish it are important to biophysical chemistry because they regulate crucial cell processes. We study experimentally and theoretically the salt dependence of Vmem in single conical nanopores for the case of multi-ionic systems of different ionic charge numbers. The major advances of this work are (i) to measure Vmem using a series of ions (Na+, K+, Ca2+, Cl-, and SO42-) that are of interest to both energy conversion and cell biochemistry, (ii) to describe the physicochemical effects resulting from the nanostructure asymmetry, (iii) to develop a theoretical model for multi-ionic systems, and (iv) to quantify the contributions of the liquid junction potentials established in the salt bridges to the total cell membrane potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call