Abstract

Aging in polymers of intrinsic microporosity has slowed exploitation due to a decay in performance over time since densification makes them unsuitable for industrial applications. This work aimed to study the impact of the operation and storage temperature on the gas separation properties and aging rates of PIM-1 self-standing films. The permeability, diffusivity, and solubility of the tested membranes were monitored through permeation tests for pure carbon dioxide and nitrogen at a maximum upstream pressure of 1.3 bar for temperatures ranging from -20 °C to 25 °C. This study found significant benefits in the operation of glassy polymeric membranes at low temperatures, resulting in a favourable trade-off in separation performance and a reduction in the aging rate by three orders of magnitude. This brings new opportunities for the industrial application of PIMs in innovative carbon capture processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.