Abstract
Natural fibre-reinforced plastic (FRP) composites have gained much interest because of their environment friendliness and cost-effectiveness compared to synthetic fibre-reinforced composites. The availability of natural fibre and ease of manufacturing have tempted researchers worldwide to develop a locally available low-cost fibre and study their feasibility for reinforcement purposes and to what extent they can satisfy the required specifications of well-reinforced polymer composite for tribological application. FRP composites have various applications in the automobile, aerospace and marine fields. They are applied to inlet cone, fan exit guide vanes and other parts of structures in a turbofan engine for lightening an engine. The erosion characteristics of the FRP composites are of vital importance due to the operational requirements in dusty environments. In this present work, the impact of stacking sequence on erosion wear behaviour of untreated woven jute and glass fabric-reinforced epoxy hybrid composites has been investigated experimentally. The orientation of glass and jute fabric was kept at (0°–90°) and (45°–45°) for all stacking sequences. All the laminates were prepared using four plies, and, the number and position of glass layers were varied so as to obtain four different stacking sequences. The erosion rate of these composites were evaluated at different impingement angles (30°–90°) at three different impact velocities (V = 48, 70, 82 m/s). Silica sand was used as the erodent. Our results showed that the impingement angle had a significant influence on the erosion rate. The composite materials showed semi-ductile behaviour with the maximum erosion at an impingement angle of 60°. The morphologies of the eroded surface were observed by a scanning electron microscope, and the possible erosion mechanisms were discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.