Abstract

The Fibre Reinforced Plastic (FRP) composites are extensively used for a wide variety of applications in automobile, aerospace, chemical, biomedical and civil engineering fields due to their excellent properties. Composite materials offer significant advantages in strength-to-weight ratio and corrosion resistance over metallic materials. Initially FRP composites were based mainly on thermoset polymers because of the ease of manufacturing. But, recently FRP composites using thermoplastics matrices are gaining importance because of their advantages over thermoset composites. In the present work, FRP laminates were fabricated using glass fabric and carbon fabric as reinforcements and thermoplastic polymer (polypropylene) as matrix. Fiber Reinforced Thermoplastics (FRTP) laminates of glass fibre /polypropylene (GF/PP), carbon fibre/ polypropylene (CF/PP) and glass-carbon fibre /polypropylene (GF/CF/PP) hybrid composite laminates were fabricated by film stacking method using hot compression molding press under optimum process parameters (pressure, temperature and dwell time). The fabricated FRTP laminates were tested for various mechanical and physical properties viz., tensile strength/modulus, flexural strength/modulus, izod impact strength, moisture absorption, barcol hardness and density as per relevant ASTM standards. The results of the tests carried out on three materials were compared. It was observed that hybrid laminate (GF/CF/PP) is superior in flexural strength/modulus as compared to GF/PP but the little lower mechanical properties compared to CF/PP laminates. But use of hybrid laminates has great cost advantage compared to CF/PP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call