Abstract

ABSTRACT Many factors are involved in urban heat island development, such as lack of green spaces, improper choice of building materials, densification, and other human activities. The aim of this research was to quantify the effects of land-use/land-cover (LU/LC) changes on urban land surface temperature (LST) during a 25-year period (1993–2018) for the semiarid Shiraz City in southern Iran using Landsat data (TM, ETM+, and OLI/TIRS) and machine learning algorithms. Five main LU/LC classes, such as orchard, vegetation, bare surface, asphalt cover, and built-up areas, were identified using a support vector machine algorithm. Landsat images were used to retrieve normalized difference vegetation index (NDVI) and normalized difference built-up index (NDBI). The results showed that the mean LST over the entire study domain increased considerably between 1993 and 2018, due to urbanization, decrease of green areas, and increasing industrial areas. Built-up areas increased considerably by 25.8% from 80 to 100.6 km2 between 1993 and 2018, while vegetation cover decreased dramatically by 69.3%. Mean LST increased from 38.4 to 40.2°C during the 25-year period with a significant increase of 3.9°C between 2013 and 2018. In addition, the Urban heat island Ratio Index (URI) displayed a substantial upward trend during the 25-year period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.