Abstract
Despite frequent warnings of irreversible side effects of smoking in public media, the consumption of cigarette is increasing dramatically in both developed and developing countries. Cigarette smoke contains different kinds of chemicals, which all capable of inducing free radical production. There are studies supporting the idea that these free radicals have adverse effects in body and causing oxidative stress. Total antioxidant capacity (TAC) is considered as the total effect of all antioxidants and total oxidant status (TOS) shows the total effect of all oxidants existing in body fluids. Therefore, this research focused on the measurement and comparison of these markers in the serum of university students. This study designed to determine the total antioxidant capacity, total oxidant status and oxidative stress index levels in the serum of active smokers, passive smokers and non-smokers in university students. A total of 150 participants were included in the study. The study population consisted of 50 smokers, 50 passive smokers and 50 nonsmokers. In serum samples, the levels of TAC and TOS were measured by spectrophotometric method using Rel Assay Diagnostics kit. Oxidative stress index was calculated through the TOS/TAC formula in three groups. The mean value TAC levels in serum samples of the three groups of smokers, passive smokers and nonsmokers were 1.096, 1.220 and 1.844 mmol Trolox equivalent/L, respectively, which were significantly greater in nonsmokers than smokers and passive smokers. The mean value TOS levels in serum samples of the three groups of smokers, passive smokers and nonsmokers were 13.747, 11.099 and 7.6510 µmol H2O2 equivalent/L, respectively, which were significantly lower in nonsmokers than two other groups. OSI values in smokers and passive smokers were significantly higher than the control group. According to our findings, the antioxidant capacity in all smokers (active and inactive) was less than the control group (non-smokers). The results of this study showed that smoking reduces the activity of the antioxidant defense system and activates the oxidative stress system in the body. Based on these findings, it can be clearly concluded that the decrease in antioxidant capacity in smokers is associated with increased production of oxidants and free radicals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Health Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.