Abstract

AbstractThe photovoltaic effect of the silicon (Si)/silicon carbide (SiC) quantum dot super lattice (QDSL) and multi‐quantum well (QW) strucutres is presented based on numerical simulation and experimental studies. The QDSL and QW structures act as an intermediate layer in a p‐i‐n Si solar cell. The QDSL consists of a stack of four 4‐nm Si nano disks and 2‐nm SiC barrier layers embedded in a SiC matrix fabricated with a top‐down etching process. The Si nano disks were observed with bright field‐scanning transmission electron microscopy. The simulation results based on the 3D finite element method confirmed that the quantum effect on the band structure for the QDSL and QW structures was different and had different effects on solar cell operation. The effect of vertical wave‐function coupling to form a miniband in the QDSL was observed based on the solar‐cell performance, showing a dramatic photovoltaic response in generating a high photocurrent density Jsc of 29.24 mA/cm2, open circuit voltage Voc of 0.51 V, fill factor FF of 0.74, and efficiency η of 11.07% with respect to a i‐QW solar cell with Jsc of 25.27 mA/cm2, Voc of 0.49 V, FF of 0.69, and η of 8.61% and an i‐Si solar cell with Jsc of 27.63 mA/cm2, Voc of 0.55 V, FF of 0.61, and η of 10.00%. A wide range of photo‐carrier transports by the QD arrays in the QDSL solar cell is possible in the internal quantum efficiency spectra with respect to the internal quantum efficiency of the i‐QW solar cell. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.