Abstract

The photovoltaic (PV) nature of the silicon (Si) quantum dot super lattice (QDSL) is studied with an atomic-layer-deposited aluminum oxide film (ALD-Al2O3) and a conventional sputtered-grown amorphous silicon carbide film (a-SiC). The QDSL structures act as an intermediate layer in a p/i/n+ Si solar cell. The QDSL consists of 4-nm Si on 2-nm SiC nanodisks (NDs) arrayed in an ALD-Al2O3 and a-SiC passivation matrix. Formation of Si-NDs was confirmed by bright field scanning transmission electron microscope. A significant PV response in generating a high photocurrent density $\mathit {J_{sc}}$ of 30.15 mA/cm $^{2}$ , open circuit voltage $\mathit {V_{oc}}$ of 0.50 V, fill factor FF of 0.61, and efficiency $\eta $ of 9.12% was observed in ALD-Al2O3/QDSL solar cell with respect to a-SiC/QDSL solar cell with $\mathit {J_{sc}}$ of 26.94 mA/cm $^{2}$ , $\mathit {V_{oc}}$ of 0.50 V, FF of 0.47, and $\eta $ of 6.42%. A wide range of photo-carrier transports by the ALD-Al2O3/QDSL structure is possible in the external quantum efficiency spectra with respect to a-SiC/QDSL solar cell. The enhanced PV performance of the QD solar cells was clarified in terms of simulating the absorption contributions for all possible transitions in the nanostructure with different passivation films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.