Abstract

The aim of this paper is to investigate the role of the etching of the sidewalls of p-GaN on the dynamic performance of normally-off GaN HEMTs with p-type gate. We analyze two wafers having identical epitaxy but with different recipes for the sidewall etching, referred to as “Etch A” (non-optimized) and “Etch B” (optimized). We demonstrate the following relevant results: (i) the devices with non-optimized etching (Etch A), when submitted to positive gate bias, show a negative threshold voltage shift and a decrease in Ron, which are ascribed to hole injection under the gate and/or in the access regions; (ii) transient characterization indicates the existence of two trap states, with activation energies of 0.84 eV (C N defects) and 0.30 eV. The latter (with time-constants in the ms range) is indicative of the hole de-trapping process, possibly related to trap states in the AlGaN barrier or at the passivation/AlGaN interface; (iii) by optimizing the p-GaN sidewall etching (for the same epitaxy) it is possible to completely eliminate the threshold voltage shift. This indicates that hole injection mostly takes place on the sidewalls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.