Abstract

The impact of shear stress and increases in pH on the release of natural dissolved organic matter (DOM) from Fe-DOM and Al-DOM flocs was investigated for a high organic matter, low turbidity raw water by application of a dynamic extinction probe (DEP) and liquid chromatography organic carbon detection (LC-OCD). It was shown that high shear forces resulted in a breakage of Fe-DOM flocs. Re-growth took place during subsequent low shear phases. However, re-growth was limited. The flocs regained a size of about 50% of the size after initial coagulation. Cyclic shearing resulted in slower re-growth rates. A new insight was that when enough time was given, similar sizes of the re-grown flocs were regained.As shown by bulk DOC, only an insignificant release of DOM took place when flocs were exposed to shear. Increase in shear stress resulted in smaller flocs with higher specific outer surface area. However, DOM removal did not change. Thus, there was no increase in adsorption capacity due to floc breakage. Consequently, DOM must be adsorbed inside the amorphous flocs rather than on the outer surface. Also, as shear results in more compact flocs, compaction does not have an effect on DOM removal.A pH increase of 0.5, as it can happen during water treatment after coagulation, resulted in a release of DOM. Humic substances accounted for the largest proportion of total DOM released. The increase in pH did not affect floc size. Consequently, DOM removal is mainly governed by the dependence of DOM properties on pH with the final pH determining the degree of DOM removal and not the path on which this pH is reached. The physical properties of the flocs have no impact on DOM removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call