Abstract

As the technology feature size is reduced, the thermal management of high-performance very large scale integrations (VLSIs) becomes an important design issue. The self-heating effect and nonuniform power distribution in VLSIs lead to performance and long-term reliability degradation. In this paper, we analyze the self-heating effect in high-performance sub-0.18-/spl mu/m bulk and silicon-on-insulator (SOI) CMOS circuits using fast transient quasi-dc thermal simulations. The impact of the self-heating effect and technology scaling on the metallization lifetime and the gate oxide time-to-breakdown (TBD) reduction are also investigated. Based on simulation results, an optimized clock-driver design is proposed. The proposed layout reduces the hot-spot temperature by 15/spl deg/C and by 7/spl deg/C in 0.09-/spl mu/m SOI and bulk CMOS technologies, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call