Abstract

Water level fluctuations (WLF) are natural patterns that are necessary for the survival of various plants, and WLF guarantee both the productivity and the biodiversity of wetlands. However, the underlying mechanisms of how changes in vegetation are linked to seasonal WLF remain unclear. Using vegetation and hydrological data from 1989 to 2009, we identified the key seasonal fluctuations and their impacts on vegetation in the Poyang Lake wetland by utilizing a tree-based hierarchical model. According to our results: 1) WLF in summer had significant impacts on both sedges and reeds. The severe summer floods promoted the expansion of sedges, while they inhibited the expansion of reeds; 2) WLF in autumn also greatly impacted sedges, while reeds were severely affected in spring. Specifically, we found that low water levels in autumn led to the expansion of sedges, and low water levels in spring led to the expansion of reeds. The results were well corroborated through comparisons of the vegetation distribution patterns over the last two decades (i.e., the 1990s and 2000s), which may shed light on corresponding water resource and wetland management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call