Abstract
Biofilm communities cultivated in rotating annular bioreactors using water from the South Saskatchewan River were assessed for the effects of seasonal variations and nutrient (C, N, and P) additions. Confocal laser microscopy revealed that while control biofilms were consistently dominated by bacterial biomass, the addition of nutrients shifted biofilms of summer and fall water samples to phototrophic-dominated communities. In nutrient-amended biofilms, similar patterns of nitrification, denitrification, and hexadecane mineralization rates were observed for winter and spring biofilms; fall biofilms had the highest rates of nitrification and hexadecane mineralization, and summer biofilms had the highest rates of denitrification. Very low rates of all measured activities were detected in control biofilms (without nutrient addition) regardless of season. Nutrient addition caused large increases in hexadecane mineralization and denitrification rates but only modest increases, if any, in nitrification rates, depending upon the season. Generally, both alkB and nirK were more readily PCR amplified from nutrient-amended biofilms. Both genes were amplified from all samples except for nirK from the fall control biofilm. It appears that bacterial production in the South Saskatchewan River water is limited by the availability of nutrients and that biofilm activities and composition vary with nutrient availability and time of year.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.