Abstract
In coastal regions sheltered from the direct impact of swell- and storm-wave activity, locally generated wind waves, particularly those associated with strong sea-breeze activity, play a dominant role in controlling nearshore and foreshore processes. Field data collected from the Perth Metropolitan Coast (western Australia) during a typical summer sea-breeze cycle, are presented. It is demonstrated that the nearshore environment responds rapidly to an increase in wind speed (up to 12 m s −1) during the sea breeze, resulting in considerable changes to the nearshore hydrodynamics and morphology. Incident wave energy increased during the sea breeze and was associated with development of a wind-wave field with significant wave heights up to 0.9 m. Nearshore currents responded to this change in wave climate with the development of net offshore near-bed currents and a rapid increase in the mean longshore current from < 0.05 m s −1 to 1.0 m s −1 A 10-fold increase in suspended sediment concentration and a 100-fold increase in the longshore sand transport resulted from the effects of the sea-breeze system. Erosion of the beachface was coincident with the development of the wind-wave field. Sea breeze wave-driven water circulation also completely eroded beach cusps (wavelength 20–30 m), overwhelmed the rip current system associated with the beach cusps and suppressed the infra-gravity wave frequencies in the incident wave and swash record. The beach cusps reformed after the cessation of the sea breeze. It is demonstrated that the beachface is in a constant stage of adjustment to the incident wave energy through the diurnal sea-breeze cycle alternating between dissipative and reflective morphodynamic regimes. The results may be used to determine the impact of a medium-sized storm on the beachface. It is clear that the sea-breeze system plays a major role in controlling the nearshore and foreshore processes not only in this region, but also on other geographic locations where strong sea breezes are present.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have