Abstract

The utilization of microalgae as a green carbon source for chemical production has attracted attention for its potential use in sustainable and climate-friendly solutions. This study investigates the growth of Dunaliella salina, a unicellular green microalga, in response to salinity variations and water and seawater addition to compensate for evaporation in open cultures. The impact of continuous and non-continuous water addition, as well as seawater addition, on the growth of D. salina was analyzed though tank tests. The results showed that different water-addition methods did not significantly influence cell concentrations, indicating the organism’s resilience to salinity changes. Continuous water addition maintained stable salinity levels at 12%, but required continuous monitoring, while non-continuous addition reduced the intervention frequency. The overall results showed that a salinity range between 12 and 15% did not affect microalgae growth, suggesting flexibility in evaporation-loss compensation methods based on cultivation-system specifics and resource availability. Maintaining consistent biomass regardless of the water-addition method used suggests sustainable production within the tested salinity range, with seawater addition making microalgae cultivation more adaptable to regions with varying water availability. Further research, including outdoor pilot tests, is recommended to validate and extend these findings to natural environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call