Abstract

BackgroundImpella (Abiomed, Danvers, MA, USA) is a percutaneous ventricular assist device commonly used in cardiogenic shock, providing robust hemodynamic support, improving the systemic circulation, and relieving pulmonary congestion. Maintaining adequate left ventricular (LV) filling is essential for optimal hemodynamic support by Impella. This study aimed to investigate the impact of pulmonary vascular resistance (PVR) and right ventricular (RV) function on Impella-supported hemodynamics in severe biventricular failure using cardiovascular simulation. MethodsWe used Simulink® (Mathworks, Inc., Natick, MA, USA) for the simulation, incorporating pump performance of Impella CP determined using a mock circulatory loop. Both systemic and pulmonary circulation were modeled using a 5-element resistance–capacitance network. The four cardiac chambers were represented by time-varying elastance with unidirectional valves. In the scenario of severe LV dysfunction (LV end-systolic elastance set at a low level of 0.4 mmHg/mL), we compared the changes in right (RAP) and left atrial pressures (LAP), total systemic flow, and pressure–volume loop relationship at varying degrees of RV function, PVR, and Impella flow rate. ResultsThe simulation results showed that under low PVR conditions, an increase in Impella flow rate slightly reduced RAP and LAP and increased total systemic flow, regardless of RV function. Under moderate RV dysfunction and high PVR conditions, an increase in Impella flow rate elevated RAP and excessively reduced LAP to induce LV suction, which limited the increase in total systemic flow. ConclusionsPVR is the primary determinant of stable and effective Impella hemodynamic support in patients with severe biventricular failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call