Abstract
Climate change at the global level has accelerated the energy transition around the world. With the aim of reducing CO2 emissions, the paradigm of using electric vehicles (EVs) has been globally accepted. The impact of EVs and their integration into the energy system is vital for accepting the increasing number of EVs. Considering the way the modern energy system functions, the role of EVs in the system may vary. A methodology for analyzing the impact of reactive power from public electric vehicle charging stations (EVCSs) on two main indicators of the distribution system is proposed as follows: globally, referring to active power losses, and locally, referring to transformer aging. This paper indicates that there is an optimal value of reactive power coming from EV chargers at EVCSs by which active energy losses and transformer aging are reduced. The proposed methodology is based on relevant models for calculating power flows and transformer aging and appropriately takes into consideration the stochastic nature of EV charging demand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.