Abstract
The aim of this study is to analyse the spatio-temporal evolution of hydro-rainfall variables in the Agnéby watershed in a disturbed climatic context. Rainfall data from the stations of Arrah, Bongouanou, M’Batto, Akoupé, Céchi, Agboville, Adzopé, Sikensi, Abidjan Airport and Dabou as well as hydrometric data from the stations of Agboville, Offoliguié, M’Bessé and Guessiguié were used. The methodological approach is based on the application of independence and trend tests and spatio-temporal analysis of daily rainfall maxima, duration of consecutive rainfall events, number of rainfall events above a threshold and daily flow maxima. The hypothesis of independence justified the relevance of the choice of variables. The trend test showed the dynamic upward evolution of extreme rainfall and the decrease in the duration of consecutive rainy episodes, in the number of rainy episodes and in the flows feeding the main watercourse. Moreover, spatial analysis of daily maximum rainfall amounts above 120 mm, consecutive maximum rainfall amounts above 160 mm and Gumbel rainfall amounts above 190 mm indicated heavy rainfall in the southern part of the watershed. However, a decrease in rainfall is recorded in the areas covered by the stations of Arrah, Bongouanou, M’Batto, Ce chi and Akoupé. An increase in the flood flow calculated from the Generalized Extreme Value (GEV) between 76.60 m3∙s–1 and 225.70 m3∙s–1 is presented in the main river. The spatio-temporal variation in annual rainfall heights showed a high rainfall in the southern part of the watershed with a decrease in rainfall over the decades (1976–1985 and 1996–2005) followed by an increase over the decades (1986–1995 and 2006–2015). Despite the general decrease in rainfall, extreme rainfall has become frequent, causing flooding in the watershed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have