Abstract
Microfiber from textiles is one of the new anthropogenic pollutants which attracted a wide range of researchers. Domestic laundry, being the most common cause of microfiber release from textiles, is widely studied. Studies exhibit a broad range of quantities of microfibers owing to the distinct quantification methodologies employed due to their convenience and resource availability. Out of several such estimation processes, reporting microfiber quantity in numbers or mass (mg or g) is quite common with respect to the unit area or weight of the textile used. However, results reported by different literature vary significantly. Hence, this study aims to analyze the microfiber release from knitted polyester fabric using count- and mass-based methods. Four different fabrics were used for this study with three different counting processes from literature along with direct weight difference estimation. The results of the direct counting method showed that the average microfiber release of selected fabrics is 13.28–33.16 microfibers per sq.cm, whereas, the direct weight estimation showed an average weight of 0.0664 ± 0.0289 mg/sq.cm. The subsequent conversion showed a release of 887.89 ± 633.49 microfibers/sq.cm of the fabric. Further, the microfiber mass was also estimated using the number of microfiber count and found that a sq.cm of fabric releases up to 0.0010–0.0024 mg of microfibers. While comparing the results, the weight-based estimation showed a significantly higher microfiber release (41.3–42.9 times) than the direct counting method. The deposition of surfactants in detergents, contaminants from the water, atmospheric contaminants, and finishes released from the fabric can be the sources of additional weights noted in the direct mass estimation. As the weight-based method is quite simple and the fastest way to quantify the microfibers, future studies must focus on this area to reduce the error percentage in quantification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.