Abstract
The effects of high energy proton irradiation dose on dc performance as well as critical voltage of the drain-voltage step-stress of AlGaN/GaN high electron mobility transistors (HEMTs) were investigated to evaluate the feasibility of AlGaN/GaN HEMTs for space applications, which need to stand a variety of irradiations. The HEMTs were irradiated with protons at a fixed energy of 5 MeV and doses ranging from 109 to 2 × 1014 cm−2. For the dc characteristics, there was only minimal degradation of saturation drain current (IDSS), transconductance (gm), electron mobility, and sheet carrier concentration at doses below 2 × 1013 cm−2, while the reduction of these parameters were 15%, 9%, 41% and 16.6%, respectively, at a dose of 2 × 1014 cm−2. At this same dose condition, increases of 37% in drain breakdown voltage (VBR) and of 45% in critical voltage (Vcri) were observed. The improvements of drain breakdown voltage and critical voltage were attributed to the modification of the depletion region due to the introduction of a higher density of defects after irradiation at a higher dose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.