Abstract
AbstractThe impact of protein fouling on platinum electrodes was assessed by electrochemical methods. Protein fouling affected the electrode potential and charge transfer through the electrode‐solution interface. Adsorbed proteins partially blocked the electrode, with no charge passing through blocked regions. The electrochemical theory and methodology for investigating partially blocked electrodes is fully presented, applied to protein adsorption, and the implications for bionics applications are discussed. The partially blocked electrode had a reduced admittance, and increased impedance and polarization resistance consistent with a smaller effective electrode area. The charge storage capacity and charge injection capacity decreased after protein adsorption. The effective electrode area was assessed by impedance and cyclic voltammetry. The diffusion profile towards the partially blocked electrode was mixed between linear and radial diffusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.