Abstract

Lignin plays an important functional and structural rolein plants, but also contributes to the recalcitrance of lignocellulosic biomass to hydrolysis. This study addresses the influence of lignin in hydrolysis of sugarcane bagasse from conventional bred lines (UFV260 and UFV204) that were selected from 432 field-grown clones. In addition to higher sugar production, bagasse clone UFV204 had a small, but statistically significant, lower insoluble lignin content compared with clone UFV260 (15.5% vs, 16.6%) and also exhibited a significantly higher cellulose conversion to glucose (81.3% vs. 63.3%) at a cellulase loading of 5 (filter paper unit) FPU/g of glucan or 3 FPU/g total solids for liquid hot water pretreated bagasse (200°C, 10 min). The enzyme loading was further decreased by 50% to 2.5 FPU/g glucan and resulted in a similar glucan conversion (88.5%) for clone UFV204 when the bagasse was preincubated with bovine serum albumin at pH 4.8 and nonproductive binding of cellulase components was blocked. Comparison of Langmuir adsorption isotherms and differential adsorption of the three major cellulolytic enzyme components endoglucanase, cellobiohydrolase, and β-glucosidase help to explain differences due to lignin content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.