Abstract

Two different designs of top-emitting green OLEDs (Organic Light-Emitting Diodes) have been studied. The first one presents a planar OLED architecture. The second one presents an OLED having a topographic surface, so as to simulate a pixel partitioning of a display using an electrically insulating, 200 nm-thick, resist. It has been observed that the topography has a large impact on OLED performances. Studying devices using an ALD (Atomic Layer Deposition)-deposited Al2O3 barrier film shows that topographic OLEDs have a lower stability under storage in 65 °C/85% RH conditions compared to planar ones, with a difference in ageing models between the two devices. As the ALD deposition technology has a high conformity, which implies that ALD-deposited Al2O3 barrier films should be as good on topographic devices as on planar ones, we inferred that the topographic OLED Achilles’ heel lies rather in the OLED structure rather than in the Al2O3 encapsulation itself. Thus, topographic and planar unencapsulated OLEDs (without Al2O3) were studied: interestingly, it has been observed that planar OLEDs can live several weeks, while topographic OLEDs show a very short shelf lifetime (in laboratory atmosphere, at 21 °C/50% RH), of only a couple of hours. It will be shown that the topographic OLED surface tends to reduce the thickness of the PVD (Physical vapour Deposition)-deposited layers in the OLED, as this is expected for a non-conformal deposition PVD technique, on tapered angle regions of the resist (pixel edges). While this thickness variation would not be critical for thick electrodes, as for instance for bottom-emitting devices made on glass substrates, this thickness reduction turns out to be a critical point for the ultrathin, 15 nm, silver cathode, used as semi-transparent electrode in this top-emitting architecture and will therefore be discussed in the framework of using OLED top-emitting architectures in (micro)display technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.