Abstract

The quantitative characteristics of traps created in the bandgap-engineered tunneling oxide (BE-TOX) layer and block layer after program/erase (P/E) stress-cycling in a 3D NAND flash memory were investigated. The trap spectroscopy by charge injection and sensing technique was used to obtain the distribution of traps in these layers. In the BE-TOX layer, significant traps were generated at 1.3 eV in the nitrogen-doped layer (N1) and increased by 48% in the fresh cell after P/E stress-cycling. The H bonds in the N1 are more likely to break during the stress-cycling and create neutral &#x2261; SiO<sup>&#x25CF;</sup> traps. In the block layer, however, trap generation was negligible after stress-cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.