Abstract

We extended our knowledge of the impact of organic matter (OM) and meteorological factors on the long-term trend, seasonality and gas/particle partitioning behavior of polybrominated diphenyl ethers (PBDEs). In Lake Chaohu, PBDEs had an increasing trend, with a doubling time of 13.4 years at the urban site, and a decreasing trend, with a halving time of 6.1 years at the rural site. At the urban site, the negative association of OM with most congeners indicated that the graphene-like carbonaceous components might carry or release PBDEs, and the negative association of long-term rain fall and wind speed with most congeners was suggested to dilute or increase the transport speed of PBDEs in the atmosphere. At the rural site, the negative association with PM10 and positive association with OM indicated that the PBDEs-buried OM was mainly from non-local sources. Restricted to the temperature seasonality, the frequency of PBDE congeners decreased with seasonality from 64% and 43% to 50% and 43% at the urban and rural sites, respectively. The slope of the simplified Pankow adsorption model in samples with larger absolute OM content (>10 μgC m−3) was steeper than that with lower absolute OM content (<5 μgC m−3), indicating that OM facilitated the gas-particle partitioning equilibrium. Interestingly, the theoretic partitioning coefficients were much lower than the measured ones for less brominated BDEs, whereas the highly brominated BDEs did the opposite. The theoretic partitioning coefficient should be further modified by considering the molecular weight distribution of the OM and the corresponding activity coefficients of the target compound in a specific type of OM phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call