Abstract
The electrical characteristics of crystalline ZrO2 gate dielectrics with different nitrogen depth profiles were investigated, which were treated by the in-situ atomic layer doping of nitrogen and post-deposition nitridation processes, respectively, using remote NH3 plasma at a low treatment temperature of 250°C. The crystalline ZrO2 gate dielectric of the tetragonal/cubic phase was formed by post-metallization annealing (PMA) at a low temperature of 450°C, resulting in an increase of the dielectric constant. As compared with the in-situ atomic layer doping of nitrogen, the post-deposition nitrogen process leads to a lower capacitance equivalent thickness of 1.13nm with a low leakage current density of 1.35×10−5A/cm2. The enhanced capacitance density caused by the post-deposition nitrogen treatment may be ascribed to the high nitrogen concentration at the top surface of gate dielectric, giving rise to the suppression of oxygen diffusion from the ambient toward the interface and so a thinner interfacial layer. The result reveals that the nitrogen incorporation at the top surface of gate oxide is favorable to the scaling of crystalline high-K gate dielectrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.