Abstract

ABSTRACTThe N-glycosylation profile of immunoglobulin G (IgG) is considered a critical quality attribute due to its impact on IgG-Fc gamma receptor (FcγR) interactions, which subsequently affect antibody-dependent cell-based immune responses. In this study, we investigated the impact of the FcγR capture method, as well as FcγR N-glycosylation, on the kinetics of interaction with various glycoforms of trastuzumab (TZM) in a surface plasmon resonance (SPR) biosensor assay. More specifically, we developed a novel strategy based on coiled-coil interactions for the stable and oriented capture of coil-tagged FcγRs at the biosensor surface. Coil-tagged FcγR capture outperformed all other capture strategies applied to the SPR study of IgG-FcγR interactions, as the robustness and reproducibility of the assay and the shelf life of the biosensor chip were excellent (> 1,000 IgG injections with the same biosensor surface). Coil-tagged FcγRs displaying different N-glycosylation profiles were generated either by different expression systems, in vitro glycoengineering or by size-exclusion chromatography, and roughly characterized by lectin blotting. Of salient interest, the overlay of their kinetics of interaction with several TZM glycoforms revealed key differences on both association and dissociation kinetics, confirming a complex influence of the FcγR N-glycosylation and its inherent heterogeneity upon receptor interaction with mAbs. This work is thus an important step towards better understanding of the impact of glycosylation upon binding of IgGs, either natural or engineered, to their receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.