Abstract

The origin of dislocation evolution during SiC crystal growth is usually related to lattice relaxation mechanisms caused by thermal stress. In this paper we discuss dislocation generation and dislocation propagation related to doping and suppression of basal plane dislocations, the latter being of particular interest for bipolar electronic devices. We have prepared alternating p-/n-/pdoped SiC crystals using the donor nitrogen and the acceptors aluminum or boron. In addition we determined the mechanical properties of n-type and p-type SiC; in particular we measured the critical shear stress by nano-indentation on c-plane and a-plane 6H-SiC surfaces. A considerably lower basal plane dislocation density is found in aluminum as well as in boron doped p-type SiC compared to nitrogen doped n-type SiC. It is concluded that the explanation of the reduced basal plane dislocation density in p-type SiC needs the consideration of electronic as well as mechanical effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.