Abstract

We investigate the delocalization of holes in the semicrystalline conjugated polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT) by directly measuring the hyperfine coupling between photogenerated polarons and bound nuclear spins using electron nuclear double resonance spectroscopy. An extrapolation of the corresponding oligomer spectra reveals that charges tend to delocalize over 4.0-4.8 nm with delocalization strongly dependent on molecular order and crystallinity of the PBTTT polymer thin films. Density functional theory calculations of hyperfine couplings confirm that long-range corrected functionals appropriately describe the change in coupling strength with increasing oligomer size and agree well with the experimentally measured polymer limit. Our discussion presents general guidelines illustrating the various pitfalls and opportunities when deducing polaron localization lengths from hyperfine coupling spectra of conjugated polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.