Abstract

Electron-nuclear double resonance (ENDOR) spectroscopy provides useful information on hyperfine interactions between nuclear magnetic moments and the magnetic moment of an unpaired electron spin. Because the hyperfine coupling constant reacts quite sensitively to polarity changes in the direct vicinity of the nucleus under consideration, ENDOR spectroscopy can be favorably used for the detection of subtle protein-cofactor interactions. A number of pulsed ENDOR studies on flavoproteins have been published during the past few years; most of them were designed to characterize the flavin cofactor by means of its protonation state, or to detect individual protein-cofactor interactions. The aim of this study is to compare the pulsed ENDOR spectra from different flavoproteins in terms of variations of characteristic proton hyperfine values. The general concept is to observe limits of possible influences on the cofactor's electronic state by surrounding amino acids. Furthermore, we compare ENDOR data obtained from in vivo experiments with in vitro data to emphasize the potential of the method for gaining molecular information in complex media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call