Abstract

In this work we investigate the impact of evolving memory system features, such as large on-chip caches, automatic prefetch, and the growing distance to main memory on 3D stencil computations. These calculations form the basis for a wide range of scientific applications from simple Jacobi iterations to complex multigrid and block structured adaptive PDE solvers. First we develop a simple benchmark to evaluate the effectiveness of prefetching in cache-based memory systems. Next we present a small parameterized probe and validate its use as a proxy for general stencil computations on three modern microprocessors. We then derive an analytical memory cost model for quantifying cache-blocking behavior and demonstrate its effectiveness in predicting the stencil-computation performance. Overall results demonstrate that recent trends memory system organization have reduced the efficacy of traditional cache-blocking optimizations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.