Abstract

Stencil computation is a classic computational kernel present in many high-performance scientific applications, like image processing and partial differential equation solvers (PDE). A stencil computation sweeps over a multi-dimensional grid and repeatedly updates values associated with points using the values from neighboring points. Stencil computations often employ large datasets that exceed cache capacity, leading to excessive accesses to the memory subsystem. As such, 3D stencil computations on large grid sizes are memory-bound.In this paper we present PIMS, an in-memory accelerator for stencil computations. PIMS, implemented in the logic layer of a 3D-stacked memory, exploits the high bandwidth provided by through-silicon vias to reduce redundant memory traffic. Our comprehensive evaluation using three different grid sizes with six categories of orders indicate that the proposed architecture reduces 48.25% of data movement on average and obtains up to 65.55% of bank conflict reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.