Abstract

AbstractThe growing discrepancy between CPU computing power and memory bandwidth drives more and more numerical algorithms into a bandwidth‐bound regime. One example is the overlapping Schwarz smoother, a highly effective building block for iterative multigrid solution of elliptic equations with higher order finite elements. Two options of reducing the required memory bandwidth are sparsity exploiting storage layouts and representing matrix entries with reduced precision in floating point or fixed point format. We investigate the impact of several options on storage demand and contraction rate, both analytically in the context of subspace correction methods and numerically at an example of solid mechanics. Both perspectives agree on the favourite scheme: fixed point representation of Cholesky factors in nested dissection storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.